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The equilibrium geometries and the binding energies of Nin clusters (n e 23) have been calculated by using
an empirical many-body potential and molecular dynamics (MD) simulation. For small clusters, the potential
is found to reproduce the geometries based on first-principles density functional calculations. It is shown
that the clusters do not mimic the bulk structure and undergo significant geometrical changes with size. The
binding energy per atom, on the other hand, increases monotonically with size. The evolution of the geometries
is found to be correlated with the underlying changes in the nature of bonding. An analysis of the fragmentation
channels based on the ground state energies shows the loss of the Ni dimer to be the most energetically
favorable channel. The calculated geometries are compared with those derived from recent experiments on
N2 adsorption on Nin clusters.

I. Introduction

The field of atomic clusters has received widespread attention
since the geometries and electronic, magnetic, and chemical
properties of clusters are found to be different from the bulk.1-3

The properties often evolve non-monotonically with size, and
the possibilities of making new materials by assembling clusters
with tailored properties are being envisioned.4 The novelty in
clusters is largely due to the fact that their geometrical structures
are unique and are governed by the local chemical bonding
instead of the long-range order as in the bulk. An understanding
of the evolution of the equilibrium geometries and its relation-
ship to the underlying electronic structure are, therefore, of
central importance. Despite vast progress in our understanding
of the physics of clusters in the last decade, certain basic issues
remain mostly unsolved. For example, there is no experimental
technique that can directly yield the geometries of small clusters.
Structures of atomic clusters consisting of a few hundred atoms
or less are too small to be probed by diffraction techniques and
too large to be probed by spectroscopic techniques. However,
it is in this size range that clusters exhibit their unique size-
specific properties. The study of atomic structures of clusters
has, therefore, been left to indirect experimental methods and/
or theoretical calculations. For simple metals, for instance, the
electron spin resonance or negative ion photoelectron spectros-
copy combined with ab initio calculations5-16 is being used to
derive information on geometries. For transition metals, the
situation is unclear. These metals are characterized by unfilled
valence d-orbitals, which complicate the description because
of their localization and high density of states. On the
experimental side, efforts are being made to probe the structure
via chemical methods.17 Here, one reacts the metal clusters
with a weakly interacting gas such as N2 and studies the number
of adsorbed molecules as a function of temperature and pressure.
Assuming that different surface sites have different affinity for
binding N2’s, the number of adsorbed molecules can give an
indication of the number of inequivalent metal sites, from which
one can derive a geometrical structure. This approach has
recently been used by Riley and co-workers17 to propose
geometries of Nin clusters,n < 28.
The d-states offer a particular challenge for the theory. The

number of states and their localized character require extensive
computational resources. There have been only limited ab initio

studies with differing level of complexity. Earlier attempts made
use of the Hatree-Fock6,7,12or the density functional method5,9
to study transition metal clusters confined to selected geometries.
While providing detailed electronic structure, these methods did
not carry out global geometry optimization, which is germane
to small clusters. Attempts were also made to carry out studies
ignoring the d-states altogether.10 It is only very recently that
realistic calculations with optimized geometries were
attempted.13-15 Unfortunately, these are computer intensive and
have been confined to clusters having less than 10 atoms. In
addition, the results depend on the approximations made in the
ab initio calculations. For example, the equilibrium geometries
and energies of Fen clusters (n< 7 ) have been computed using
Car-Parrinello molecular dynamics simulations14 and molecular
orbital theory.13 In the former method, the electron-ion
interaction is treated by a pseudopotential and electron orbitals
are expanded in a plane wave basis. In the molecular orbital
theory, the electron orbitals are expressed by a Gaussian basis.
Both the schemes employ the spin density functional method.
Although the geometries obtained by these authors agree with
each other, the energetics do not. The binding energy of the
ground state of Fe2 obtained by Ballone and Jones14 is 3.81
eV, while that obtained by Castro and Salahub is 2.08 eV. The
corresponding experimental value is 1.14 eV. Similarly for Fe3

the binding energy calculated from the ab initio MD method is
3.04 eV, which is considerably larger than that predicted by
molecular orbital theory, namely, 1.41 eV. This discrepancy
persists for larger clusters too. Although, more accurate ab initio
MD could be carried out, such calculations are computationally
too expensive and hence are only restricted for studying small
clusters (n< 7). Since most of the experiments are carried out
on clusters containing up to several dozen atoms, it is clear that
there is a need for methods capable of providing information
at these sizes.
A way out of these limitations is to use molecular dynamics

simulation and model many-body potentials.18,19 There are a
number of approaches that are currently being pursued. One
of these methods is based on the embedded atom model.20,21

Here, the many-body potential is expressed as a sum of a
pairwise term and a term that takes into account many-body
effects. The many-body effects appear through the inhomoge-
neous electron charge density obtained by superposing atomic
electron densities. The many-body component of the potential
is a functional of the electron density and is usually calculatedX Abstract published inAdVance ACS Abstracts,January 15, 1997.
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in a local approximation. The parameters appearing in this
formulation are usually fitted to bulk cohesive energy and dimer
potential energy curves. This approach has been used by Stave
and De Pristo21 to calculate the structure of Nin clusters up to
23 atoms. A different approach is to use analytic two- and three-
body potentials.22 The parameters entering the potential can
be determined either by fitting to ab initio Born-Oppenheimer
surfaces on small clusters or to the selected bulk properties.
While the former approach provides a way of extending ab initio
calculations to larger sizes, the latter can give an idea about the
applicability of bulk interatomic interactions at smaller sizes.
The analytical potentials are particularly attractive for studying
cluster dynamics at elevated temperatures. An attempt along
these lines was recently made by Jellineket al.18 They used a
many-body form proposed by Gupta,23 which is a generic form
applicable to all transition metals. The structures based on this
potential were at variance with those based on effective medium
theory.21 It is not clear whether this discrepancy is due to
differences in the treatment of the many-body potential or due
to the fact that the parameters of the Gupta potential are not
suitable for small clusters.
In this paper we provide the results of a molecular dynamics

study of Nin clusters (up to 23 atoms) using the potential
developed by Finnis and Sinclair.24 These potentials are based
on tight binding total energy calculations and contain many-
body terms. They are distinct from the conventional two-body
potentials, and the reader is referred to a recent paper by Sutton
et al.25 for details. We have developed a new numerically
efficient scheme for obtaining ground state geometries. The
scheme is a variant of the conventional simulated annealing26

and allows an efficient approach to the ground state via
configurational energy. We first demonstrate the validity of
the potential by comparing the calculated geometries of small
Nin (n e 6) clusters with those based on ab initio density
functional studies. We then use it to study the geometries and
energetics of larger clusters (23g n > 6). Our results agree
with those based on effective medium theory and experiment.
It is shown that while the binding energies increase monotoni-
cally with size, the geometries can change substantially even
with the addition of a single atom. The change in geometry is
linked to the underlying electronic structure of clusters. For
many sizes we find energetically close isomers with different
symmetries. The implication of the existence of isomers on
observed properties will be discussed. The energies are used
to examine the fragmentation channels.27 For all sizes the
energetically most preferred channel is the loss of Ni2.
In section 2, we describe the potential and the method used

to optimize the geometries. The results are discussed in section
3 and summarized in section 4.

II. Interatomic Potential and Computational Techniques

Molecular dynamics is a powerful method to probe the
equilibrium geometries, stability, fragmentation channels, and
melting of atomic clusters. The key requirement in this
procedure is the interatomic potential. While the quantum
molecular dynamics method advanced by Car and Parrinello28

eliminates the need for interatomic potentials, its applicability
to transition metal systems has met with considerable difficulty,
as outlined in the previous section. The choices of interatomic
potentials for the transition metal series are still limited to
empirical forms. Here the parameters are obtained by fitting
the data to experiment in bulk systems such as cohesive energy,
elastic constants, and lattice structure. One does not know a
priori if such potentials are useful for studying the dynamics of
clusters. It is, therefore, important that structures and energetics

calculated using empirical interatomic potentials be compared
with those obtained from first principles. This is the approach
we have taken in this paper. The interaction between the atoms
in a Ni cluster is taken from the work of Finnis-Sinclair24 and
Sutton and Chen.29 The potential has the form

where

rij is the distance between the atomsi and j, a is the lattice
constant,c is a dimensionless parameter,ε is the parameter with
dimension of energy, andmandn are integers. The parameters
in the above equation have the following values for Ni:a )
3.52 Å, c ) 39.432,ε ) 1.5707× 10-2 eV,m ) 6, andn )
9.29 The square root term in the attractive part of the potential
accounts for many-body interaction. This potential has been
shown to reproduce bulk and surface properties (e.g. relaxation
of top layers) of transition metals with sufficient accuracy. For
example, the calculated inward relaxation of top layers for 100,
110, and 111 faces are 2.9, 7.9, and 2.1,30 in excellent agreement
with experimental values of 3.2,31 8.6,32 and 1.3,33 respectively.
Experimentally it is difficult to obtain the surface energy of
each individual face. However, the surface energies obtained
using the above potential are in close agreement with those
obtained using embedded atom potentials.34 Energetics of
clusters with complete geometric shells (confined to icosahedric
structures) in the size range 13-309 have also been obtained
using the above form for metal clusters.19

We use constant energy molecular dynamics (MD) simula-
tions35 for determining structure and energetics of Nin, n e 23.
The velocity Verlet algorithm35 is used to integrate the classical
equations of motions with a time step of 5× 10-15 s. The
total linear and angular momentum is kept zero,36 and the energy
is conserved to within 0.01%. Locating the global minimum
structure is a tricky matter, particularly when the ground state
is plagued by energetically close isomers. In these cases the
conventional steepest descent method37 is often unable to locate
the absolute global minimum structure. The usual approach is
then to use a simulated annealing,26 where one heats the cluster
to a very high temperature and gradually lowers the temperature,
allowing it to nearly stabilize to equilibrium configuration at
each step of the descent. The functional controlling the descent
is the total energy.28 We propose a different approach. Starting
at a high temperature, the cluster is slightly cooled38 and the
change inconfigurational energy(not the total energy) is
examined. The new configuration thus obtained is accepted if
the difference inconfigurational energy, ∆E, between the state
before and after cooling the system is negative. If∆E g 0,
then the state is accepted with a probability given by exp(-∆E/
kbT): for T f 0 the ground state is obtained. (It is easy to
convince oneself that decreasing the kinetic energy always
lowers the total energy but not necessarily the configurational
energy: by selecting the path that lowers configurational energy,
one arrives at the equilibrium configuration and avoids trapping
the system in local minima.) This method is much faster than
the usual simulated annealing approach using Metropolis
sampling.26,39 This happens because the moves in the present
MD are usually biased in the direction of intermolecular forces
whereas in Metropolis sampling one samples moves parallel or
antiparallel to the forces with equal probability. Figure 1 shows

V) ε∑
i [12∑j*i (arij)

n

- cFi
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Fi ) ∑
j*i (arij)

m

(2.2)
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a typical plot of configurational energy of a Ni13 cluster versus
MD time steps. One can easily see that using the present
method, the ground state energy is approached by an order of
magnitude faster compared to the usual simulated annealing
method, where the total energy is a functional.28

The most important consideration for interpreting the results
in the following is to assess the validity of the interatomic
potential in eq 2.1 in predicting the properties of Ni clusters.
Note that this potential does not have any explicit spin-dependent
term, and one, therefore, wonders if this could adversely affect
the properties of Ni clusters, which are expected to be magnetic.
To address this issue, it is important to realize that the parameters
of eq 2.1 are obtained by fitting to bulk and surface properties
of Ni in the ferromagnetic state. The magnetic moment at the
surface is different than in the bulk, and this change occurs
primarily due to change in coordination. Fitting the potential
to both bulk and surface therefore implicitly incorporates the
change in magnetic state via change in coordination in the total
energy calculation. In the present molecular dynamics simula-
tion we are interested in the atomic structure (i.e. equilibrium
geometries) of Ni clusters. Since most of these atoms are
surface atoms and the potential does reproduce surface recon-
struction quite well, we do not expect the absence of a spin-
dependent term in eq 2.1 to adversely affect the reliability of
the computed equilibrium geometries. It is, however, possible
that the absence of spin-dependent terms could produce an
orbital degeneracy that is different than otherwise “exact”
calculation. In that case, the computed structure can undergo
larger than expected Jahn-Teller distortion. This effect will
only be present in limited cases and may not play a significant
role in understanding properties such as energetics and equi-
librium geometries, discussed here. Indeed, ab initio density
functional calculations show that the geometries of Ni clusters
undergo minimal distortion with change in the spin-states.40

A direct way of assessing the validity of the potential in eq
2.1 is to compute the structures of small Ni clusters and compare
these with first-principles calculations that take into account
electron spin explicitly. This is done in Table 1 for Nin clusters
up to n ) 6 for which ab initio results15 exist. Note that the
agreement is, indeed, very good. We have also calculated the
ground state magnetic moment and vertical ionization potential
from first principles using the geometries obtained from
molecular dynamics simulation, and our results agree quanti-
tatively with experiment as well as independent ab initio

molecular orbital calculations.15,41 In addition, we have com-
puted the energy difference between the isomers using many-
body potential and first-principle calculations, and our results
show a close agreement between the two.41

III. Results and Discussions

We have studied the evolution of equilibrium geometries,
average interatomic distances, coordination number, relative
stability, and dominant fragmentation channels of Nin clusters
for 2 e n e 23. The studies enable us to identify the basic
building block as the clusters grow and how the evolution in
the geometry may be correlated with the underlying bonding
mechanism. We discuss these results individually in the
following.
A. Equilibrium Geometries. Determination of equilibrium

geometries of clusters plays a central role in our understanding
of the evolution of lattice structure as clusters grow. The
equilibrium geometries are intimately related to the underlying
electronic structure, and the preferred structure is the one for
which the total energy reaches the minimum. It should be
emphasized that the total energy depends on the electron
distribution, which in turn depends on the atomic structure.
While a quantitative evaluation of this self-consistent interaction
is difficult, qualitative conclusions can still be drawn on
equilibrium geometries once the dominant mechanism for the
electron bonding is established. For example, in rare-gas
systems the closed-shell configurations of atoms make the
interatomic interaction weak. The equilibrium structures are
then determined by maximizing the number of pairwise bonds
and the structures assume close-packed geometries. This is also
true for small clusters (n < 10) of Mg and other alkaline earth
elements that have closed atomic shell (ns2) configurations.
However, as clusters grow, the hybridization between s- and
p-states increases and the electrons assume a “metallic”
character. The clusters then no longer resemble the geometries
of rare-gas clusters. For clusters of simple-metal elements such
as alkali metals, the electrons are nearly free and increased
degeneracies allow the geometries to undergo Jahn-Teller
distortions. In covalently bonded systems such as Si, the
evolution of the geometries reveals that adding an atom does
not significantly perturb the structure of the parent cluster. In
Ni clusters, the bonding has contributions from the localized
d-electrons as well as quasi-free sp-electrons. For large clusters,
it is logical to assume that the electrons would exhibit strong
metallic character. Correspondingly the equilibrium geometries
would depart from the close-packed structures prevalent in rare-
gas systems. It would be easy to distort the geometry of a
preceding cluster by adding an atom. In very small clusters of
transition metal atoms, the bonding may still be characterized
by the localized nature of electrons and the corresponding atomic
structures may be close-packed. For a lack of a better
description, we will characterize the electrons in small clusters
where the geometries are close-packed to be covalent-like. In
large clusters where distortions in geometries are easy to induce,
the electrons can be assumed to be metallic-like. A study of
the evolution of geometries can, therefore, shed light on the

Figure 1. Plot of configurational energy of the Ni13 cluster versus
MD time steps. Dashed line corresponds to the conventional simulated
annealing method where the total energy is considered to be the
functional in determining the equilibrium geometry, and solid line
corresponds to the new method where the functional is the configura-
tional energy. The cooling rates for both methods are the same.

TABLE 1: Ground State Geometries, Bond Lengths, and
Binding Energies for Nin (n < 6) Clusters (Values in
Parentheses Correspond to ab Initio Results15)

size average bond length (Å) binding energy (eV)

n) 2 2.01(1.99) 2.10(1.61)
n) 3 2.15(2.15) 2.50(1.96)
n) 4 2.20(2.17) 2.77(3.34)
n) 5 2.36(2.25) 2.90(2.83)
n) 6 2.43(2.33) 3.03(3.27)
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underlying changes in the electronic structure as clusters grow.
We also note that the average interatomic distance of semicon-
ductor clusters decreases monotonically with increasing size,
while the reverse is true for metallic clusters.
We define the average interatomic distance in a cluster as

whereRij is the bond distance between two nearest neighbor
atoms andNb equals the number of such bonds. The average
coordination number in a cluster is defined as

wherei is the number of atoms that haveNi number of nearest
neighbor atoms in the cluster.N is the total number of atoms
in the cluster. Unlike in the computation of〈R〉, we consider

any atom to be a nearest neighbor atom if it lies within a distance
not exceeding 12% of the smallest bond distance. The factor
12% originates from the observation that two of the largest
bonds in the Ni23 cluster differ by 12%.
We begin by making some general remarks on the equilibrium

geometries shown in Figure 2. The physics behind each of the
preferred geometries and the existence of isomers are discussed
later in this section. In general, the geometries of clusters do
not mimic the arrangements found in the bulk. Although the
structures containing up to six atoms represent closely those
found in rare-gas clusters, they differ sharply from the rare-gas
structures at larger sizes. This departure is clearly due to the
square root term in eq 2.1. Clusters containing seven and more
atoms exhibit structures consisting of a pentagonal ring that is
the backbone of an icosahedron. The structure of Ni13 is
icosahedric. The average interatomic distance continues to rise
monotonically (see Figure 3) with size untilN) 9 but exhibits
small oscillations for larger sizes, in contrast to what one
observes in alkali metal clusters. Furthermore, the average bond
distance of Ni23 is 2.25 Å and is about 10% shorter than the

Figure 2. Equilibrium geometries of Nin (2 e n e 23) clusters.

〈R〉 )
1

Nb
∑
i,j

Rij (3.1)

CN)
1

N
∑
i

iNi (3.2)
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nearest neighbor distance in bulk Ni. These observations are
in close agreement with a recent EXAFS experiment where Apai
et al.42 have measured the Ni-Ni distance at the lowest coverage
(corresponding to a cluster diameter of 8 Å) to be 2.24( 0.04
Å. The coordination number in Figure 4 shows no sign of
convergence to the bulk value (which is 12) and exhibits sharp
variations with size. This is understandable since even for Ni23

there are 20 surface atoms and only three bulk atoms and the
coordination number of surface atoms never exceeds 9. The
role of coordination number on reactivity will be discussed later.
We now discuss the physics behind the individual geometries

of clusters in four separate groups.
Ni2-Ni6. The equilibrium geometries of Nin clusters in this

size range are very similar to those found in rare-gas clusters
as well as metal clusters with closed atomic shells such as Mgn

clusters and are consistent with hard sphere packing. Note that
the Ni2 dimer bond length is 2.01 Å. This bond length is
consistent with earlier theoretical studies. The experimental
bond length lies between 2.15 and 2.2 Å. Our value is slightly
smaller than the experimental bond length. For Ni3 and Ni4
we obtain a triangular and tetrahedral structure with interatomic
distances of 2.1 and 2.2 Å, respectively. The ab initio
calculation finds a distorted triangle for Ni3 (with bond lengths
of 2.18 and 2.15 Å) and aD2d structure (with bond lengths of
2.11 and 2.74 Å) for Ni4. In the case of Ni5, our calculations
lead to a triangular bipyramid with bond lengths of 2.25 and
2.22 Å compared to the corresponding ab initio bond lengths
of 2.29 and 2.23 Å, respectively. The comparison shows that

the many-body potential leads to geometries that are in
reasonable agreement with ab initio results. Note that our many-
body potential does not permit the Jahn-Teller distortions in
small clusters obtained in the ab initio calculation that includes
spin. The Ni6 cluster is a perfect octahedron with a bond length
of 2.25 Å. The atoms in each of these clusters are identical,
and one does not expect any preferential sites for the chemical
reaction. Examination of the structures of Ni2-Ni6 also
illustrates how the geometries evolve as successive atoms are
added. It appears that there is minimal rearrangement of the
parent cluster as an atom is added to it; that is, the energy cost
to rearrange the atomic configurations of the parent cluster must
be large and is therefore avoided. This is the signature of
“covalent bonding” among the atoms, as a covalent bond is more
directional than a metallic bond. In free electron metal clusters,
the delocalized nature of the electrons permits structural
rearrangement.
To understand what factors govern the equilibrium geom-

etries, we describe in Figure 5 some of the possible shapes
clusters can take as a function of size. Forn) 3, the structures
can be either linear chain or triangular. The number of metal-
metal bonds for the triangular structure is higher than that in
the linear structure, and the former is found to correspond to
the equilibrium geometry. Forn ) 4, the number of metal-
metal bonds in the rhombus structure is 4, while it is 6 in the
tetrahedral structure. As seen in Figure 2 the tetrahedral Ni4 is
the preferred structure. Forn) 5 the structures in Figure 5e-g
have respectively nine, eight, and five metal-metal bonds, and
Figure 5e has the lowest energy. Forn ) 6, both structures in
Figure 5h (octahedron) and Figure 5j (bicapped triangular
bipyramid) have 12 metal-metal bonds, but the average
coordination number for the structure in Figure 5h is 4, while
that for Figure 5j is 3.6. Total energy minimization yields Ni6

to have an octahedral preferred structure. Thus for clusters that
have an equal number of metal-metal bonds, a secondary rule
is that the structure that maximizes the coordination number
has the lowest energy.
Ni7. The Ni7 cluster is a special case since a number of earlier

theoretical calculations have predicted the preferred structure
to be a pentagonal bipyramid, which is also the structure we
calculate (see Figure 3). However, the experimental work on
N2 uptake was shown to be consistent with only the capped
octahedron structure. This raises several interesting questions:
(1) Is the capped octahedron structure another isomer of Ni7?
(2) If so, is it energetically degenerate with the pentagonal
bipyramid structure? (3) Why does theory predict a structure
that is inconsistent with the experimentally inferred structure?
(4) The icosahedric structure of metal clusters requires the
existence of a 5-fold ring. Although this could have occurred
for Ni5, it did not appear until Ni7. All the structures until Ni6
can be viewed as adding an atom to the previous cluster without
modifying its original structure. This will also hold true for
Ni7 if the preferred structure is indeed a capped octahedron.
However, for the Ni7 to be a pentagonal bipyramid, major
reconstruction of the octahedral Ni6 structure is necessary as
an atom is added. Alternatively, the existence of Ni7 in the
pentagonal bipyramid structure could point to the existence of
an alternate channel for cluster growth with the pentagonal ring
as a seed. Quantitative understanding of this possibility can
only be achieved by a detailed simulation of the clustering
process. Before we discuss this, we can provide a qualitative
understanding of the preferred structure by examining the
number of metal-metal bonds and coordination number of the
two structures shown in Figure 5k,l. Both the structures have
15 metal-metal bonds. However, in the pentagonal bipyramid

Figure 3. Plot of the average interatomic distance,〈R〉, as a function
of cluster size.

Figure 4. Plot of the average coordination number, CN, as a function
of cluster size.
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structure there are two atoms with 6-fold coordination and five
atoms with 4-fold coordination, yielding an average coordination
number of 4.6. For the capped octahedron, there are three 5-fold
coordinated, three 4-fold coordinated, and one 3-fold coordinated
atom, yielding an average coordination number of 4.3. Thus,
the structures in Figure 5k,l should be nearly degenerate.
Indeed, our calculation shows that the total energy of the
pentagonal bipyramid is 0.1 eV lower than the capped octahe-
dron. The structure in Figure 5n also has 15 metal-metal
bonds, but its average coordination number is even lower (4.1)
than that in Figure 5l and is energetically unfavorable. We
would like to add that the effective medium potential used by
Stave and Depristo does not lead to the capped octahedron as
one of the structures close in energy to the pentagonal bipyramid.
The experimental data of Parkset al.17 clearly point to the
existence of a capped octahedron structure.
We discuss the coexistence of Ni7 isomers vis a` vis

experimental observation in the latter part of this section.
Ni8-Ni13. The structure of Ni8 is found to be bicapped

octahedral and not capped pentagonal bipyramid, as seen in rare-
gas clusters. Note that the bicapped octahedron has 19 metal-
metal bonds, while the capped pentagonal bipyramid can only
have 18 bonds. This further confirms the rule discussed above
in favoring the former structure as the ground state. The growth
sequence of Ni9-Ni13 is toward the icosahedron structure. Ni9

has a bicapped pentagonal structure, while the most stable
structures for Ni10-Ni12 are found by successively capping the
triangular faces of the pentagonal bipyramid. Ni12 is found to
be the icosahedron minus one atom. The ground state structure
for Ni13 is an icosahedron.
Ni14-Ni23. The structure of the Ni14 cluster emerges by

adding an atom to one of the pentagonal planes of the Ni13

cluster. This is in contrast to the rare-gas clusters, where the
14-atom cluster is a capped icosahedron. Thus the transition
metal clusters can gain additional stability by modifying even
the highly stable parent clusters. Ni15 is found to have a
hexagonal antiprism structure with three atoms along the

symmetric axis, again in sharp contrast to rare-gas clusters. The
structures of Ni16 and Ni17 can only be constructed after
significant modifications of the Ni15 and Ni16 structures,
respectively. Symmetry returns as Ni18 forms and Ni19 assumes
the structure of a double icosahedron. Ni20 has aD3d symmetry
structure as the most stable one. Ni21 has a structure with two
hexagonal planes and one pentagonal plane with four atoms on
the symmetric axis. Ni22 has a structure with three hexagonal
planes. The global minimum configuration for Ni23 is found
to be a polyicosahedral (three interpenetrating double icosahe-
dra) cluster.
B. Comparison with Experiment. As mentioned earlier,

there are no experimental techniques that can directly probe
the geometry of small transition metal clusters. Attempts have
been made to achieve structural information indirectly by
chemical methods. For Ni clusters extensive studies of N2

uptake as a function of temperature and pressure have been used
to predict geometries for 4< n < 29 atom clusters.17 This is
done by examining the plateaus in the N2 uptake and making
the following assumptions. (1) N2 binds to clusters in molecular
form. (2) Binding of N2 does not significantly alter the
geometry of the metal cluster. (3) Ni atoms with four or fewer
nearest neighbor metal atoms can bind two N2 molecules at
saturation. (4) Ni atoms with metal coordination number
between 5 and 8 can bind one N2 at saturation. (5) Ni atom
with 9 metal-metal coordination can only weakly bind an N2,
and finally (6) Ni with more than nine nearest neighbor metal
atoms cannot bind an N2 molecule.
Assumption 1 is probably valid since it is known that N2

binds molecularly on metal surfaces.43 Furthermore, the binding
energy of a N2 molecule is 9.7 eV, while that of a NiN dimer
is only 3.2 eV. Thus, it will be energetically unfavorable for
N2 to dissociate and bind to Ni in atomic form. This also holds
for the binding of NO and CO to the Ni atom, but it is not true
for H2 interacting with Ni. Assumption 2 is likely valid for
the same reason as discussed above: N2 is an inert gas and
interacts weakly with a metal cluster. The validity of assump-

Figure 5. Possible structures a cluster can take as a function of cluster size.
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tions 3-6 are difficult to assess, as there is no fundamental
justification for it. More importantly, it is not at all clear
whether these rules should apply to all clusters irrespective of
their size. One knows that the electronic structure of clusters
depends sensitively on their size.
To critically examine how well the above assumptions 3-6

are valid, we have calculated the number of N2’s a cluster can
absorb at saturation by using these rules and the structures in
Figure 2. We provide the details of the calculation in Table 2.
The second column lists the number of equivalent atoms in each
cluster, with their coordination number given in parentheses.
For example,i(Ni) meansi number of atoms haveNi-fold
metal-metal coordination. With the use of assumptions 3-6,
the third column lists the maximum number of N2’s that can be
bound to each of the clusters in Figure 2. The last column is
taken from the plateaus of the N2 uptake data and indicates the
number of inequivalent sites in a cluster and the number of N2’s
that can bind to these sites.
We note that the geometries of clusters containing 4, 12, 13,

14, 16, 17,19, and 21 atoms are consistent with the experiments.
For Ni5 and Ni6 clusters Riley and co-workers17 predicted the
structures to be triangular bipyramid and regular octahedron,
respectively, which is exactly what we calculate. However, the
maximum N2 uptake according to the above rules is clearly
inconsistent with these geometries. This suggests the need to
understand N2 absorption on clusters on a more fundamental
level. For example, ab initio calculations should be carried out
to study the nature of N2 interaction with metal clusters. Is N2
bound molecularly? How many N2’s can be bound to a single
Ni atom, and how does this number change as cluster size
increases? Such calculations are presently underway and will
be discussed in due course.
We now focus on the N2 uptake on the Ni7 cluster, which

shows very interesting features. Riley and co-workers17 have
observed plateaus in the N2 uptake at 1, 7, and 8; that is, Ni7

readily binds one N2 molecule and as conditions are altered it
can bind seven and finally eight N2 molecules. This is clearly
inconsistent with a pentagonal bipyramid structure, which has

two inequivalent sites (five 4-fold coordinated and two 6-fold
coordinated atoms). The capped octahedron structure with a
lone atom capping a triangular face will satisfy the experimental
observation. No theoretical calculation studied so far has
predicted this structure to be the ground state. As mentioned
earlier, this cluster is found to be only 0.1 eV above the
pentagonal bipyramid structure, and within the accuracy of our
calculation, these two structures are degenerate. Thus, our
calculation of Ni7 structure provides a geometry that is indeed
consistent with the experiment. We should emphasize that the
existence of Ni7 in the pentagonal bipyramid structure cannot
be ruled out in the experiment, as Ni7 in this structure can easily
take seven N2’s and there is a plateau at 7 in the experimental
data. Further experiments may be necessary to distinguish
between the two isomers, and we address this in detail in a
separate paper.41

Riley and co-workers also find no strong evidence for
pentagonal growth for Ni10-Ni12. This is contrary to what we
see in Figure 2, where the pentagonal growth is clearly visible.
We consider Ni11 in particular. If we disregard the only Ni
atom that has 10 metal-metal coordination, the remaining 10
atoms of Ni11 could bind 10 N2’s, which is exactly the plateau
Riley and co-workers observe. We fail to see a plateau at either
13 or 14, as described by these authors.
To conclude this section, it is fair to say that the structures

derived here can indeed be consistent with the experimental N2

uptake data if the assumptions of how many N2’s can bind to
a particular site are not fixed for all clusters. Therefore, there
is a need to understand the nature of N2 binding to clusters at
a fundamental level.
C. Stability, Energetics, and Reaction Channels.The

relative stabilities of the clusters described in the above can be
studied by analyzing their energetics. We consider here the
evolution of the binding energy,Eb, the difference in energy in
adding an atom to the preceding cluster,∆E, and the second-
order derivative,∆′E of the total energy. These energies are
defined as

In the limit of very large clusters bothEb and∆Ewill approach
the cohesive energy of the corresponding bulk solid. The extent
to whichEb and∆E differ is a signature of how different the
clusters are from their bulk limit in terms of stability.
It has been demonstrated for alkali metal clusters that∆E

and∆′E show odd-even alternation with pronounced features
atN) 2, 8, 20, 40, ...44 These are referred to as magic numbers
and correspond to the most stable clusters. Since the electrons
in a transition metal cluster are not free-electron-like, one would
not expect the energetics of Nin clusters to mimic the structures
seen in alkali metal clusters.
In Figure 6 we plot the binding energy as a function of cluster

size. The binding energy evolves monotonically, but the binding
energy per atom of the largest cluster (3.5 eV) is still much
lower than the cohesive energy of the solid, which is 4.44 eV.
The energy difference,∆E, in adding an atom to the preceding

cluster is plotted in Figure 7. It does show odd-even alternation
up to the Ni7 cluster, but this trend disappears for larger clusters.
Secondly, there are no pronounced structures except those of
Ni2 and Ni13 that can be identified as magic numbers. This
can be seen more clearly in the second derivative of the total
energy,∆′E plotted in Figure 8 where forn ) 2 and 13 there

TABLE 2: Metal -Metal Coordination as a Function of
Cluster Size and the Comparison between N2 Uptake Data
Derived from Experiment (Ref 13) and That Computed from
Structures Shown in Figure 2

no. of N2’s bound

cluster
size

no. equivalent sites
(coordination)
i(Ni); see eq 3.2

derived from
structures
in Figure 2

experimental
plateaus

3 3(2) 6 8
4 4(3) 8 4, 8
5 2(3), 3(4) 10 5, 8
6 6(4) 12 6
7 5(4), 2(6) 12 1, 7, 8
8 4(4), 4(5) 12 7, 9
9 4(4), 2(5), 2(6), 1(8) 13 8
10 3(4), 3(5), 3(6), 1(9) 13 9
11 2(4), 4(5), 4(6), 1(10) 12 10
12 5 (5), 6(6), 1(11) 11 11
13 12(6), 1(12) 12 12
14 1(3), 9(6), 3(7), 1(12) 14 14
15 12(6), 2(7), 1(14) 14 12, 16
16 1(4), 7(5), 7(6), 1(9) 16 14, 16
17 2(4), 3(5), 11(6), 1(11) 16 16
18 2(4), 8(5), 8(7) 20 16, 17
19 12(6), 5(8), 2(12) 17 17
20 2(5), 16(6), 2(11) 18 17
21 1(4), 4(5), 8(6), 4(7), 2(8), 1(10),

1(12)
18 18

22 5(5), 9(6), 4(7), 2(8), 1(9), 1(12) 20 17
23 2(5), 12(6), 6(7), 1(8), 2(12) 21 18

Eb(n) ) -[E(n) - nE0]/n (3.3)

∆E(n) ) E(n) - E(n- 1) (3.4)

∆′E(n) ) E(n+ 1)- E(n- 1)- 2E(n) (3.5)
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are pronounced peaks. Results in Figures 6-8 clearly indicate
that there is no similarity between the electronic structure of
Nin and alkali metal clusters, just as there is no resemblance
between the geometries of these two classes of clusters. Even
in small clusters, the electronic structure of transition metal
clusters shows unique features not seen in simple-metal clusters.
This can be further demonstrated by studying the fragmenta-

tion energies as a cluster ofn-atoms fragment tom and (n -
m) clusters. In the case of alkali metal clusters it was predicted
that in neutral clusters45 those consisting of magic number atoms
(2, 8, 20, ...) will be the predominant fragmentation products.

If the parent cluster is singly positively charged, the preferred
channels will shift ton ) 3, 9, ...45 This prediction has since
been verified.46 Since in the transition metal clusters there are
no magic numbers, the preferred channels can be investigated
by calculating the dissociation energy,

whereE(n), E(m), andE(n+ m) are the total energies of clusters
of n,m, and (n + m) atoms, respectively. Table 3 contains the
channels corresponding to lowest and next highest energy,∆D
for Ni clusters. It can be noted here that the dimer is found to
be the most favorable channel for Nin in the size rangen e 24.
(This is consistent with Figure 8, where Ni2 is found to exhibit
unusual stability.) For clusters larger thann ) 13, other
channels also have very close fragmentation energy. We would
like to caution the reader that the above analysis for dissociation
channels is based on the total energy difference only. In actual
fragmentation, the energy barriers can play an important role.
We will discuss this aspect along with the temperature-
dependent dynamics of Ni clusters in a forthcoming paper and
compare with experiments involving collision-induced frag-
mentation.

IV. Conclusions

In summary, we have calculated the equilibrium geometries,
relative stabilities, and dominant fragmentation channels of Nin

Figure 6. Plot of binding energy per atom,Eb(n), as a function of
cluster size.

Figure 7. Plot of “cohesive energy”,∆E(n), as a function of cluster
size. For details see the text.

Figure 8. Plot of second energy difference of the total energy,∆′E(n)
(see the text for definition), as a function of cluster size.

TABLE 3: Lowest and Next Highest Fragmentation Energy
for Ni Clusters

cluster size
(N)

fragmentation channels
(N) m+ n)

dissociation energy
(eV)

4 2, 2 2.66
3, 1 3.56

5 3, 2 2.79
4, 1 3.44

6 4, 2 2.88
3, 3 3.15

7 5, 2 2.95
4, 3 3.08

8 6, 2 2.78
4, 4 3.01

9 7, 2 2.84
6, 3 3.04

10 8, 2 2.98
6, 4 3.10

11 9, 2 3.01
7, 4 3.19

12 10, 2 3.15
6, 6 3.36

13 11, 2 3.69
8, 3 3.90

14 12, 2 3.30
13, 1 3.37

15 13, 2 2.95
12, 3 3.80

16 14, 2 3.30
13, 3 3.36

17 15, 2 3.20
13, 4 3.50

18 16, 2 3.17
15, 3 3.58

19 17, 2 3.26
16, 3 3.66

20 18, 2 3.23
19, 1 (17, 3) 3.60

21 19, 2 3.28
18, 3 3.70

22 20, 2 3.50
21, 1 (19, 3) 3.80

23 21, 2 3.45
22, 1 3.70

∆D(m) ) E(n) + E(m) - E(n+ m) (3.6)
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(n e 23) clusters using an efficient molecular dynamics
simulation technique and a semiempirical many-body inter-
atomic potential. The equilibrium geometries are governed by
maximizing the number of metal-metal bonds. The geometries
are found to be very different from either the rare-gas or simple-
metal clusters and cannot be characterized as fragments of the
fcc structure. While for very small clusters (ne 7) the evolution
of geometry can be viewed as adding an atom to the preceding
cluster without significantly modifying its structure, distortions
in the cluster structure is seen in larger clusters. The icosahedral
growth pattern is observed starting from the Ni9 cluster.
However, for clusters such as Ni14 and Ni15, the atoms do not
simply cap the icosahedric structure of Ni13, but rather start
forming a hexagonal ring structure. Most of the structures are
consistent with those derived from the N2 uptake data if one
assumes that a metal atom with more than 9 metal-metal
coordination cannot bind a N2 molecule while every other
exposed Ni atom can bind one N2 molecule. The existence of
cluster isomers has also been identified. In particular, Ni7 has
been found to exist in two nearly degenerate forms: a capped
octahedron and a pentagonal bipyramid.
The average interatomic distance evolves monotonically

toward the bulk limit even though for the Ni23 cluster it is still
10% less than the bulk value. The average coordination number,
on the other hand, varies strongly with cluster size and shows
no sign of convergence to the bulk value of 12. We also find
no correlation between the average coordination number and
the plateaus in the N2 uptake data.
The binding energy per atom in the cluster evolves monotoni-

cally with size, while the energy difference in adding an atom
to the preceding cluster and the second-order derivative of the
total energy show sharp oscillations. The convergence of the
binding energy per atom to the bulk cohesive energy is slow,
and there are no magic numbers, as found in alkali metal
clusters. Ni2 and Ni13 clusters show enhanced stability com-
pared to other clusters and form dominant products in the
fragmentation of neutral Ni clusters.
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